Minimizing Separable Convex Objectives on Arbitrarily Directed Trees of Variable Upper Bound Constraints

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Upper Bound on the First Zagreb Index in Trees

In this paper we give sharp upper bounds on the Zagreb indices and characterize all trees achieving equality in these bounds. Also, we give lower bound on first Zagreb coindex of trees.

متن کامل

Separable convex optimization with nested lower and upper constraints

We study a convex resource allocation problem in which lower and upper bounds are imposed on partial sums of allocations. This model is linked to a large range of applications, including production planning, speed optimization, stratified sampling, support vector machines, portfolio management, and telecommunications. We propose an efficient gradient-free divide-and-conquer algorithm, which use...

متن کامل

Minimizing a Separable Convex Function on Parallel Machines with Preemptions

The basic scheduling problem we are dealing with in this paper is the following one. A set of jobs has to be scheduled on a set of parallel uniform machines. Each machine can handle at most one job at a time. All jobs have the same execution requirement. Each machine has a known speed. The processing of any job may be interrupted arbitrarily often and resumed later on any machine. The goal is t...

متن کامل

Minimizing quadratic functions with separable quadratic constraints

This article deals with minimizing quadratic functions with a special form of quadratic constraints that arise in 3D contact problems of linear elasticity with isotropic friction [Haslinger, J., Kučera, R. and Dostál, Z., 2004, An algorithm for the numerical realization of 3D contact problems with Coulomb friction. Journal of Computational and Applied Mathematics, 164/165, 387–408.]. The propos...

متن کامل

Convergence Rate of an Optimization Algorithm for Minimizing Quadratic Functions with Separable Convex Constraints

A new active set algorithm for minimizing quadratic functions with separable convex constraints is proposed by combining the conjugate gradient method with the projected gradient. It generalizes recently developed algorithms of quadratic programming constrained by simple bounds. A linear convergence rate in terms of the Hessian spectral condition number is proven. Numerical experiments, includi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics of Operations Research

سال: 1991

ISSN: 0364-765X,1526-5471

DOI: 10.1287/moor.16.3.504